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Using the spinor approach, we calculate exactly the complete spectrum of the 
transfer matrix for the finite-width, planar Ising model with adjustable bound- 
ary conditions. Specifically, in order to control the boundary conditions, we 
consider an Ising model wrapped around the cylinder, and introduce along the 
axis a "seam" of defect bonds of variable strength. Depending on the boundary 
conditions used, the mass gap is found to vanish algebraically or exponentially 
with the size of the system. These results are compared with recent numerical 
simulations, and with random-walk and capillary-wave arguments. 
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1. I N T R O D U C T I O N  

During the past several years the theory of finite-size effects, and of 
finite-size scaling in general, (1 3) has emerged as a particularly useful tool 
in the studies of critical and noncritical properties of a variety of two- and 
three-dimensional (3D) lattice models. An important application of the 
theory is in Monte Carlo simulations, (4) where, in order to estimate ther- 
modynamic limit (infinite-size) quantities, one needs a proper extrapolation 
procedure which preferably has theoretical justification. A typical example 
of this is the surface tension, for which a finite-size scaling function is 
needed. On the basis of their Monte Carlo simulations, Mon and Jasnow (4) 
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guessed the form, which was subsequently shown (5) to be a rather accurate 
estimate by an exact calculation of this function. 

Another application is in numerical transfer matrix (TM) methods (6) 
applied to strips of finite width but infinite length. The extrapolation is 
then made over the strip width; scaling arguments have to be invoked to 
justify this procedure. Within the transfer matrix method, the mathematical 
description of critical behavior is formulated in terms of the spectral 
properties of the TM, specifically, the asymptotic degeneracy of the largest 
eigenvalues. Away from criticality, the TM spectrum may yield information 
not only on the bulk thermodynamic quantities, but also on various 
interfacial properties (7 9) (below Tc). However, it has been realized that 
boundary condition effects play an important role in such applications and 
must be carefully accounted for. (a~ 

The effect of boundary conditions on the TM spectrum has been 
recently analyzed by Cabrera and Jullien, (1~ who performed an extensive 
numerical study of the asymptotic behavior of the mass gap in the 1D 
quantum Ising chain with variable boundary conditions and T < Tc. Their 
study suggests that the mass gap may vanish exponentially or algebraically 
with increasing size of the system, and that the precise behavior depends on 
the boundary conditions used. Several phenomenological, (11) random 
walk, (12) and capillary-wave arguments 19'13~ have been developed in order 
to explain this surprising result. Exact results for the 1D quantum Ising 
model in the transverse field have been available ~14~16) only for free, 
periodic, and antiperiodic boundary conditions, so that numerical results 
for more general boundary conditions cannot be checked. Furthermore, by 
appealing to universality, one can expect the equivalence between the 
finite-size properties of 1D quantum models and the planar Ising model; 
essentially, the relationship is that the 1D Ising model with perpendicular 
magnetic field is obtained in the limit of extreme anisotropy of the planar 
Ising model. (2~ Such a limit undoubtedly suppresses certain scattering 
events in the fermion picture and therefore should not be viewed uncriti- 
cally. Nevertheless, one has some reason to believe that the numerical 
results of Cabrera and Jullien ~~ indeed apply to the isotropic Ising model 
with appropriate boundary conditions. 

In this work we study the finite-size planar Ising model and consider 
a finite-dimensional TM between rows, each having M spins, with 
adjustable boundary conditions. By this we mean that the coupling 
between the Mth and the first spin in any row, denoted g J2, is different 
from the value between any other pair, which is denoted by J2. Thus, we 
generalize earlier work by one of the authors (17) in which the considerably 
simpler problem, with g=0 ,  was analyzed. Another result, (18) related to 
this last one by duality, as it later transpired, is the spectrum of the transfer 
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matrix with the spins at the end of the row fixed. Here we consider a 
finite-size, M x oe, square lattice 2D Ising strip with adjustable boundary 
conditions (see below) and calculate exactly the complete set of eigenvalues 
of the corresponding TM. The TM eigenvalues will be denoted A j, with 

Ao> AI > A2.. .  (1.1) 

where some of the eigenvalues may be multiply degenerate, but the maxi- 
mal one is simple by the Perron-Frobenius theorem. Finite-size correlation 
lengths corresponding to spectral gaps are introduced by (7) 

~j(M)= [ln(Ao/Aj)] '- (1.2) 

with j =  1, 2,.... The phase transition is typically accompanied by the 
divergence, as M--* ~ ,  of one or more correlation lengths r For 
example, in the periodic Ising cylinders, the first-order phase transition is 
associated with exponential divergence of ~I(M) only. ~8) The other extreme 
is the critical point spectrum characterized by the linear divergence ~ / o f  an 
unbounded number of Cj(M). 

In addition to the finite-size correlation length (~(M), it is customary 
to consider the behavior of the mass gap m(M), defined by 

re(M) .,. 1/Ca(M) (1.3) 

which vanishes in the limit M ~ oo. From the work of Onsager (19) and 
Kaufman, (2~ it is known that the mass gap of the Ising strip with periodic 
boundary conditions vanishes exponentially as 

re(M) ~- CM -~ exp( - aM) (1.4) 

with ~ = 1/2, while a = r is the surface tension of an interface orthogonal to 
the cylinder axis. This suggests a phenomenological picture (5'9'13) of a "gas" 
of interfaces orthogonal to the axis and separated by the average distance 
[m(M)]  - 1 ~  ~I(M). That is, for T <  Tc, the cylinder breaks into domains 
of size ~I(M), with + and - magnetizations. In this work we show that 
for general boundary conditions, the mass gap indeed vanishes according 
to (4), but with variable values of a and o-. Furthermore, for certain 
boundary conditions, a = 0 ,  and the decay of the mass gap becomes 
algebraic. More generally, 0 ~< a ~< z. The comparison of our results with 
numerical ~~ and phenomenological ~9,u-~3~ arguments will be made as we 
proceed. Some of the results described in this work have been previously 
published in a shorter form. (2t) 

The presentation is organized as follows. In Section 2 we define the 
finite-size Ising model with adjustable boundary conditions and summarize 
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our results for the mass gap. In the same section we express the TM in the 
form of the rotation matrix in spinor space. In Section 3 we briefly describe 
the spinor approach. The rotation matrix is diagonalized in Section 4 
and the quantization condition for the allowed wavenumbers is derived. 
Section 4 presents the results for the spectrum of the rotation matrix. The 
spectrum of the TM is given in Section 6. In Section 7 the results for the 
mass gap are obtained from the ratio of the two largest eigenvalues of the 
TM. Finally, in Section 8, we present qualitative arguments which 
emphasize the physical picture behind the finite-size behavior of the mass 
gap. 

2. DEF IN IT ION OF THE M O D E L  A N D  S U M M A R Y  OF THE 
RESULTS 

Consider a 2D Ising square lattice wrapped on a cylinder of circum- 
ference M, as shown in Fig. 1. The spins interact via nearest-neighbor 
ferromagnetic interactions J1 and J2 parallel and orthogonal to the cylinder 
axis, respectively. In addition, a set of modified bonds J different from J2 
is introduced in a row parallel to the axis, as shown by thick lines in Fig. 1. 
It is customary to denote g = ~7/J 2. By changing the value of the parameter 
g, one can control the boundary conditions. For  instance, the values 
g = - 1 ,  0, +1 correspond to antiperiodic, free, and periodic boundary 
conditions, respectively. In this work we will allow this parameter to 
assume arbitrary real values - ~ < g < + ~ .  

Our results for the mass gap can be summarized as follows. For  all 
values of g, the gap vanishes according to (1.4), with ~ and a varying with 
g. In particular, we establish by exact calculation: 

K1 

K2 

Fig. 1. The boundary of a two-dimensional Ising model with nearest-neighbor reduced 
couplings K 1 and K 2 as modified by an adjustable coupling K along the axis of the cylinder 
with circumference M. 
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, 

0" ~ "C. 

2. 

For all g > 0 ,  the gap vanishes exponentially, with c~= 1/2 and 

For - 1  < g ~< 0, the decay is still exponential, with c~ = 0, while 
0 < a ~ r depends on g and the temperature. The explicit expres- 
sion is given by (6.12) below, and the graph of a is shown in 
Fig. 6. 

3. For g--  -1 ,  the mass gap vanishes algebraically, with a = 0  and 
~=2 .  

4. For all g < -1 ,  the algebraic decay (cr = 0) persists, with c~ = 3. 

Let us now turn to the derivation of these and other results. In order 
to analyze the model described, we consider the transfer matrix in the 
direction parallel to the cylinder axis. Our approach is based on the spinor 
technique (2~ of Kaufman and Onsager. (A more transparent fermion 
technique seems to be unsuitable for this problem.) 

In terms of the Pauli matrices a~, (e = x, y, z), the matrix associated 
with the horizontal bonds, i.e., bonds between columns, is expressed in its 
usual form 

Vl=exp  - K *  a~, (2.1) 

with K 1 = J1/kB T, and the dual coupling defined by sinh 2K i sinh 2K* = 1, 
for i--1,  2. In the vertical direction we consider a ring of couplings 
K2 = J2/kB T, with one altered bond K =  Y/kB T. The corresponding matrix 
is 

x x ~ x x (2.2) V2 = exp K2 GmGm+I'kKGMff 1 
m = l  

Note that the presence of R breaks the translational symmetry of the 
problem, except in the special cases corresponding to periodic and anti- 
periodic boundary conditions. 

Consider now the full symmetrized TM given by V= V~/2V2 V~/2. In 
the spinor approach of Kaufman and Onsager,(2~ the TM is expressed in 
terms of operators (spinors) F, defined by 

j - - 1  j - - i  

F2, -1= 1-I (--or;) ~;, r 2 , =  I-I (--a~.)af (2.3) 
i = 1  i = l  

where the spinors satisfy the anticommutation relation [F;, F j ]+  =260. 
Using (2.1)-(2.3), one can write the matrices V1 and 1/2 in the form 

M 

V1 = [I  exp(iK*V2j-1V2j) (2.4) 
j = l  
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and 
M 1 

V2 = l-[ exp(iK2F2jF2j+I)exp(--iK.FzMF1PM) (2.5) 
j = l  

where the parity operator PM=FIF2.. .F2M commutes (anticommutes) 
with any product of an even (odd) number of F's. 

From the definition (2.3), and with the use of the commutation 
properties o f / ' s ,  the following relations are easily derived: 

fFj ,  for j • m , n  
eiKrmr, Fj e-iKrmro = ~ Fm cosh 2 K -  Fn(i sinh 2K), 

~Fm(i sinh 2K) + F,  cosh 2K, 

for j = m 
for j = n 

(2.6) 

indicating that V1 can be expressed as a rotation. Specifically, in the spinor 
space spanned by the vectors (F1,...,/'2M), the matrix V1 can be represen- 
ted by a 2M-dimensional rotation matrix R1, 

Vl l l~ j  V 1 -~ ~ (R1)kj Fj (2.7) 
k 

From (2.6) it is evident that R1 has a 2 • 2 block-diagonal form 

with 

/ u 1 0 ... 00\ ) 

t O u 1 ... 

0 0 "'" 1 

(2.8) 

acting on the (F2j_I, F2j) space for j =  1,..., M. Similarly, V 2 can be 
expressed as a combination of two rotation operators acting in the even 
and odd parity subspaces, 

V2 = �89 + PM) V2+ + �89 - PM) V2_ (2.10) 

In the special case K =  K2 (periodic boundary conditions), V2+ and V 2_ 

become anticyclic and cyclic, respectively. The rotation matrices for Vz+, 
denoted R2+, are also block diagonal, but with 

= ( cosh 2K z i sinh 2K z 
u2 \ - i s i n h 2 K 2  c0sh2K2J (2.11) 

= (  cosh 2K* i sinh 2K~') 
ul \ - i s i n h 2 K *  cosh2K*J  (2.9) 
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and have the form 

0 

R2_+ = u2 ""  (2.12) 
�9 , . o . ~ 

\ + i s i n h 2 K  0 .-. cosh2/~ / 

The full transfer matrix V can thus be decomposed into its even and 
odd components, with V_ = V~/2V2_ V~/2 and V+ = V~/2V2+ V~/2 with 
rotational representation in the Fj space as in (2.7), 

V+_ FV~_ ~ = RF (2.13) 

Since the rotation matrices for V2+_ are related by a change of signs of E2, 
we consider only the odd subspace V and diagonalize R_ = Rl/2R2_ Rll/2 
for arbitrary ~'. The corresponding results for the even subspace V+ 
are easily obtained by inverting the sign of K. The diagonalization of 
the rotation matrix is described in Section 4; the connection between the 
eigenvalues of the TM and the eigenvalues of R_+ is discussed in Section 6. 

3. SP INOR A P P R O A C H  

Kaufman gave an analysis of the eigenvalue problem for symmetrized 
form of V1 V2 which is based on the theory of spinor representation (2~ of 
the orthogonal group and may be thought of as a rigorous and compact 
version of the equation-of-motion method. It is of great elegance and is 
completely general in the present context, There are special features of the 
present problem, however, which make greater simplicity possible; what is 
needed is a little linear algebra. In the spirit of Occam's razor, we will 
follow this latter course in the present article. 

In the previous section we showed that the transfer operator V induces 
a rotation R in the linear vector space spanned by the spinors. We start 
with a proposition about the canonical form of R. 

Proposit ion 1. R can be reduced to the canonical block-diagonal 
form 

(i .') R-~ H2 "'" (3.1) 
�9 , ~ . , "  

0 " ' '  M 
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where 
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for all i, j. With the notation 

and we get from (3.5) that 

y r & = O  (3.7) 

Ryj=e~Jy i (3.8) 

to supplement (3.4), we get with (3.5) that 

R(yj  + y*)  = cosh ~j(yj + y*)  + sinh ~j(yj - y*)  (3.9) 

and 

R ( y j - y * ) = c o s h ~ j ( y j - y * ) - s i n h T j ( y j +  y*) (3.10) 

Let us define 

~, = (yj + y*)/x/2,  ~b, = - i ( y , -  y*)/x//2 (3.11) 

We see from (3.6) and (3.7) that 

(~ftkj = OfOj = 6ej; Of~bj = 0 (3.12) 

cosh ~j i sinh 7j~ 
H i = - i s i n h ~ j  coshTj } (3.2) 

with 7 real, by a real, orthogonal transformation S: 

R = S H S  r (3.3) 

ProoL First, we examine the eigenvalue problem for R: 

R y = 2 y  (3.4) 

We notice that R = R*, and det R = 1. This means that the eigenvalues are 
real and occur in pairs exp(+7).  With orthogonality of R, we get 

Ry* = 2 ly ,  (3.5) 

We can always normalize the yj corresponding to the indexed eigenvalue 2j 
to get 

y~yj = 8,7 (3.6) 
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Taking (3.9)-(3.12), we get (3.1) with the real orthogonal transformation 
given by 

S =  (Ol~ l  ; @2@2;-..; ~-IMOM) (3.13) 

where each 0j, ~bj is a column vector with 2M components, given in terms 
of the eigenvalue problem for R by (3.11), completing the proof. 

Proposi t ion  2. Define 

Then the/~ are spinors and 

where H is given by (3.1). 

F = S r F  (3.14) 

VI~TV 1 = p r  H (3.15) 

ProoL Orthogonality of S gives 

[ P,, Pj] + = 2,5 0 (3.16) 

The self-adjointness of each /~s follows because S is real. Thus the P are 
spinors. 

Proposition 3. V can be written as 

M 

where c is an arbitrary real number (see below). 

Proof. Use Proposition 2 with (2.5), (2.9), and (2.10). 

Remark .  Let us define operators Xj by 

/~2j_ 1 = ~]tr; q- Xj, ['2j = - - i (X}- -Xj )  (3.18) 

Then, the X s are Fermi operators and V takes the form 

1 ~ ?j(2XJXj- 1) (3.19) V= c exp - 

Evidently, the product of eigenvalues is 

c 2u= det VI det V2 (3.20) 

from which we get c = 1, since the maximum eigenvalue is positive. 
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4. D I A G O N A L I Z A T I O N  OF THE R O T A T I O N  M A T R I X  

Our next step is to find the eigenvalues of the symmetrized rotation 
matrix R = R = R~/eR2_ R~/2. The procedure is similar to that of ref. 17, in 
which the spectrum for the free boundary case is obtained. 

We have seen that the matrix R has the following properties: Because 
R is Hermitean, its eigenvalues are real; because R R *  = I, the inverse of an 
eigenvalue is also an eigenvalue, with eigenvectors given by complex 
conjugation. Consequently, the 2M eigenvalues of R can be written in the 
form exp( ___ V j), with 7j real. 

In order to obtain the eigenvalues and eigenvectors of R, it proves 
convenient to consider first the solution of the eigenproblem 

Lx  = ( R  2 - e ~ R l l ) X  = 0 (4.1) 

where x, the eigenvector of L, is related to y, the eigenvector of R, by 
y = R ~- 1/2x. 

To simplify the notation, define 

a = e 7 cosh 2K*, b = - i e  ~ sinh 2K* 

c = cosh 2/(2, d =  - i  sinh 2K 2 (4.2) 

g = cosh 2~, ~ = - i  sinh 2K 

Using the explicit expressions (2.8), (2.9), (2.11), and (2.12), for R1 and R2, 
we obtain from the eigenvalue problem (4.1) that the components of x 
satisfy the system of second-order recurrences 

- b x 2 j _  1 + (a - c) xz j  + dx2j+ 1 = 0 (4.3a) 

- d x 2 j  + (a - c) x2j+ 1 + bx2j+ 2 = 0 (4.3b) 

for j = 1 ..... M -  1. The solutions of these equations are subject to boundary 
conditions 

(a - ~) x l  + bx2 - ~x2M = 0 (4.4a) 

- - b x 2 M _  1 + (a -- g) X2M ~- ~X 1 = 0 (4.4b) 

where we have used the notation (4.2). The recurrence relations (4.3) are 
identical to those for the free-boundary case considered in ref. 17. However, 
the boundary conditions (4.4) are different, as expected. Note also that the 
symmetry 

X 2 j +  1 = iflX2M-- 2j (4.5a) 

x2j = - i f l x 2 M  + l 2j (4.5b) 
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with ~2= 1 persists for general values of K. We seek the solutions of (4.3) 
in the general form 

Xaj= AIZ2J q- A 2 z  -2j  (4.6a) 

X2j+ 1 = i f l (A222( j -M)  + A 1Z2(M j) (4.6b) 

with 

A1/A2 = -- i f lz- t-2MF(z),  if(z) = (dz - bz 1)/(a - c) (4.6c) 

For the system of equations (4.3) to possess the nontrivial solution, the 
condition 

( a_c )2  = ( d z _ b z - 1 ) ( b z _ d z  1) (4.7) 

has to be satisfied. Substituting in this condition the explicit forms for a, b, 
c, and d from (4.2), and denoting z z = exp(&)), we obtain that y(o)), from 
(4.1), is precisely equal to the Onsager 7 dispersion function; see below. 

Due to the finiteness of the system, the allowed values of ~oj will be 
quantized. The quantization condition is obtained after substitution of (4.6) 
in the boundary condition (4.4). The resulting equation can be put in a 
more convenient form by using (4.3b) with j =  0. We obtain 

z 2M= - i f l [ c - ~ - d z  1 r ( z ) ] / [ ( c - ~ ) z - ' F ( z ) + d ]  (4.8) 

with ~ = g - i f l d =  exp(-2ilK).  The condition (4.8) can be written in a more 
convenient form if we observe that the right-hand side of (4.8) is 
unimodular and is therefore expressible in the form exp(iP), with P a real 
function. Substituting z2=exp(ie)) in (4.8), and using the identity for 
unimodular functions, namely 

C l q - i O  1 C 2 - i O  2 C I q - C 2 + i ( D 1 - D 2 )  

C2 + iD2 C i - i D 1  Ci + C 2 - i ( D 1 - D 2 )  

1 + cos P + i sin P 

= 1 +cos  P - i s i n  P 
(4.9) 

we obtain for the quantization condition (4.8) 

with 

e iMoj = fleiP(m,~g), tan P(~o, x) Y(x) tan 6*(e)) 
2 2 

sinh[(1 - x) K2] 

sinh[(1 + x) K z ] '  g = K---~ 

(4.10a) 

Y(x) = (4.10b) 
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The function Y(x) is sketched in Fig. 2. The functions 7(o9) and 6*(co) are 
the elements of the Onsager hyperbolic triangle ~17'19) and are given by 

cosh 7(o9) = cosh 2K* cosh 2K2 

- sinh 2K* sinh 2K2 cos co (4.11a) 

sinh 7(o9) cos 6"(o9) = sinh 2K2 cosh 2Kl* 

- cosh 2K2 sinh 2K* cos o9 (4.11b) 

sin o9 sin 6"(o9) 

sinh 7(o9) sinh 2K* 
(4.11c) 

Therefore, the quantization condition (4.10) determines the allowed 
values of the wavenumbers o9j and discretizes the spectrum of the rotation 
matrix. 

Y (x) 

-1 

-e- K ~ ~ -  
~L . . . .  e2K~ 

Fig. 2. Sketch of the function Y(x) entering in the quantization condition (4.10). 
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5. S P E C T R U M  OF T H E  R O T A T I O N  M A T R I X  

In order to determine the spectrum of the rotation matrix we must 
consider the real solutions of the quantization condition (4.10). These 
solutions can be located graphically, as sketched in Fig. 3, by using the 
equivalent expression 

tan-M-~= fly(g) (tan ~ )  ~ (5.1) 

Consider for simplicity the case when M is even. Clearly, there are M/2 
solutions for fl = - 1 .  For  fl = + 1 there are only 3/1/2- 1 solutions, because 
the values e )=  0, 7r lead to trivial eigenvectors when substituted in the 
eigenvector equations (4.6). Since M solutions are expected, we seek the 
additional solution among the complex values of e). This is found at 
exp(icol) = _+exp(-v), with v > 0 .  Write (4.10) in the form 

e_MV = fl 1 + iY(flg) tan(a*/2) (5.2) 
1 - iY(flg) tan(a*/2) 

The left-hand side of this equation vanishes as M ~ oe. In this limit 
co1~Oo, i.e., v-~vo, where the value Vo is obtained by setting the 
numerator of (5.2) to zero. This gives 

Y(flg)- 1 eia.(o~0 ) (5.3) 
r(flg) + 1 

Fig. 3,. 

/ j 

A sketch of the left- and right-hand sides of Eq. (5.1). The intersections give the real 
wavenumbers allowed by the quantization condition (4.10). 
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or, equivalently,  

tanh(#gK2) 

tanh K 2 

where 

(B)l/2F(ft?~176176 
L (e,,Oo _~-~T~-~A (5.4a) 

A =e  2(KI+K~), B = e  2(K1-K~) (5.4b) 

The  branch  of the square roo t  in (5.4) is chosen such that  exp [ i6* (0 ) ]  = 1. 
Fo r  T <  To, the function exp[- i6*(~)]  has branch  points  A -1, B -1 inside 
the unit  circle in the exp(ico) plane. This function is real between - 1  and 
1, except in the b ranch  cut between A 1 and B 1, as shown in Fig. 4. 
Hence  a solut ion exists for fig < 0 and the complex root  io2 o is located at 

B - 1  < ei~176 1 for I g l < l  (5.5a) 

and 

- l < e i ~ 1 7 6  for I g l > l  (5.5b) 

as shown in Fig. 4. Thus,  exp(icOo) coincides with the branch  point  B -~ 
for Igl = 0 ;  it moves  toward  1 as Igl ~ 1, the (anti)periodic limit; it then 
reappears  at - 1  and approaches  0 as ]gl increases f rom 1 + to + ~ .  

M o r e  generally, let iv+_ denote the imaginary  roots  of (4.1) for g <> 0 
and ]gl < 1. F o r  large but  finite M, the difference v_+ - V o  is exponential ly 
small. The  first correct ion is obta ined  by i terating (5.2), 

] ' 
v _ V o ~ _ 4 f l  e g v o [ y ( [ g [ ) _ y ( ] g ] ) - l ] -  L de~ (ivo) (5.6) 

i B A 

Fig. 4. The branch structure of exp i6"(o9) in the complex exp(ico) plane for T< T c. The 
imaginary solutions to (4.10) are located between - 1  and 0 for [g[ > 1 and between B -1 and 
1 for [g[<l. 
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For [gl > 1, the right-hand side changes sign; however, the imaginary roots 
in this case have no influence on the leading behavior of the mass gaps. 
This is because the eigenvalue associated with the imaginary root no longer 
corresponds to the lowest state, as can be seen from the behavior of the 
function 7(e)), given by (4.11a), for o)=iv+m Instead, for [g [> l ,  the 
leading eigenvalues are associated with the smallest real solutions of the 
quantization condition (5.1). 

6. S P E C T R U M  OF T H E  T R A N S F E R  M A T R I X  

In this section we obtain the spectrum of the transfer matrix by using 
the results derived in Sections 3 and 5. First, note that the fermion anti- 
commutation relations satisfied by the spinors Fj. are invariant under an 
orthogonal transformation. Hence, the set of Fs defined by 

/~= ST/" (6.1) 

satisfy the same anticommutation relation. Furthermore, the creation and 
annihilation operators 

X] = �89 1 + i/~2j), Xj = �89 1--iF2j ) (6.2) 

also satisfy fermion commutation rules. Substituting (6.2) in (2.13), we get 

v ( X f )  v - I = (  eTJXf ) (6.3) 
\ XJ  \e-~'XJ 

Thus the Hermitean operator V can be expressed in the diagonal form 

V= exp - 7s(2X~Xj- 1) (6.4) 
. =  

With this result, the eigenvalues of the transfer matrix V can be specified 
in a more familiar form. To this we turn now. 

The eigenvalues of the rotation matrix R• are of the form exp(+Ts), 
where 7s=7(%), and % ( j = 0 ,  M - 1 )  are the solutions of (4.10a). There- 
fore, the corresponding eigenvalues of the transfer matrix V_+ have the 
general form 

M - - 1  

A= l-[ e +-'~~ (6.5) 
j = O  

where the sign for each wavenumber can be chosen independently. The 
eigenstates of the transfer matrix V consist of the even-parity states from 

822/56/5-6-2 
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V+, and odd-parity states from V .  This selects the allowed combination 
of signs in (6.5). Specifically, the parity of vacua of the Fermi fields which 
bring V to diagonal form is obtained from the following argument. We first 
inspect the case K* = 0, for which V--V2. We then use a continuity 
argument to get the parity for all T <  To. 

For g > 0, V2 is brought to diagonal form by the transformation 
J~j- 1 = F j  for j = 2, 3,..., 2M, and/~2M = F1. This is easily seen by inspection 
of (2.5). With g > 0 ,  V2+ is brought to the diagonal form by Fj-1 = F j  for 
j = 2, 3,..., 2M (as before), but ~VzM = - F 1 .  

The vacua [q s+ ) are given by 

where 

IqS +_ ) = U(S+_ ) 10) (6.6) 

~J (6.7) v(s-+) O v*(s-+) = pj 

The parity of the vacua are 

i2M(q~+ I F 1 ..... F2M [ 4 +  ) 

- (0l s*(u+) ~v2Mrl ..... T'2M 1S(U+) I 0)  
= _[_ ( 0 l  S~(U)F2MF1 ..... F2M_IS(U_) I 0 )  

= ___i2M(01FI,... , F2M 10)  = -]-1 (6.8)  

For g < 0, the vacuum parities are just reversed. Finally, with g--0 ,  
the (single) vacuum state 14) always has even parity. 

For K~'~>0, we can evaluate (45_+[F1,...,FaM[~_+) by Wick's 
theorem in terms of contractions which are continuous functions of K* 
(>~0). Thus, the K * - - 0  parity classification holds throughout the region 
0~<r~<rc. 

With these remarks, some general properties of the TM spectrum are 
already apparent: For g > 0, the largest eigenvalues are given by (6.5) with 
all signs +.  The rest of the spectrum is constructed by exciting additional 
particles. For g < 0, however, the parity operators project out the states 
with an odd number of particles in both subspaces. Therefore, the largest 
eigenvalues in this case must contain an excitation of the lowest energy 
level. For - 1 < g < 0, the lowest energy level corresponds to bound states 
associated with the imaginary wavenumber given by the solution of (5.2). 
For g < --1, the energy levels corresponding to the imaginary wavenumber 
are lifted; the lowest excitations in this regime correspond to real 
wavenumbers e) +. 
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In order to summarize our results for the eigenvalues of the transfer 
matrix, denote by co + ( j =  1 ..... M -  1) the real solutions of (5.1) for g ~ 0 .  
Here co~ are the smallest wavenumbers in each parity subspace; this is 
obtained with fl = -1 .  It is convenient to denote 

M [ 

A+_ =e7~i~+-)/2 ]'-I e~'J+)/2 (6.9) 
j = l  

With these conventions, our results for the largest eigenvalues in the odd- 
and even-parity subspaces can be written in the compact form 

�89 + PM) v+ �89 - v 

g > 0  A+ A 
- 1 < g < 0  e - ~ i ~ - ) A  e-~iV+~A+ (6.10) 

g < --1 e-~('~ _ e-~(~ + 

For g > 0 the largest eigenvalue belongs to the odd-parity subspace. This 
assignment is reversed for g < 0. The rest of the TM spectrum is easily 
generated by the creation of additional particles (or pairs of particles) with 
the wavenumbers given by the quantization condition (4.10a). 

Once the TM spectrum is known, the mass gap is easily obtained from 
the ratio of the two largest eigenvalues. This is considered in the next 
section. 

7. RESULTS FOR THE FINITE LATTICE M A S S  GAPS 

In this section we derive exact results for the behavior of the mass gap 
for different values of g. The mass gap is obtained from the two leading 
eigenvalues Ao and A1 of the transfer matrix, 

m = - ln(A, /Ao)  (7.1) 

The largest eigenvalues in the even- and odd-parity subspaces, summarized 
by (6.10), give the leading eigenvalues of V. Before we describe the results 
for the mass gap for general values of g, let us first examine the special 
cases g =  + 1 , 0 , - 1 ,  corresponding to periodic, free, and antiperiodic 
boundary conditions, respectively. 

2.1. The Special Cases g =  +1,  0, - 1  

Consider first, for simplicity, the case g = 1, i.e., periodic boundary 
conditions. In this case all wavenumbers are real and satisfy 

e 'M~~ _1 for V v_ (7.2) 
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This follows from the quantization condition (4.10a), with Y(1)= 0. Thus, 
A o and A1 are the largest eigenvalues of the odd and even subspaces, 
respectively, and the mass gap can be expressed in the usual integral form 

1 ~ ~(oj)) 
m(M)'='2 (exp(iMo~j,= _, ~(69])--exp(i~Mc~j,= 1 

= -2--~ e iM2' + l e i M ~ -  I 
as M--,  oo (7.3) 

where the contour of integration encircles the real axis from - n  to n, as 
shown in Fig. 5. By symmetry, the lower and the upper parts of the contour 
give the same contributions; by periodicity, the upper contour can be 
deformed to go around the branch cut. As M--* 0% the integral (7.3) is 
dominated by the neighborhood of the square-root branch point m = iz, 

where r - 2 K l + l n ( t a n h K 2 )  is the surface tension of an interface 
orthogonal to the cylinder axis. This reproduces the power law M 1/2 as 
well as the exponential e x p ( - z M )  term in the mass gap for periodic 
boundary conditions. 

iT 

Fig. 5. The contour of integration for (7.3) which can be deformed into the one arround the 
branch cut. 
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For the antiperiodic case ( g =  -1 ) ,  the spectra for the odd and even 
subspaces are the same as in the periodic case, but the parity assignment 
is reversed. The maximum eigenvalues are 

A o = e-~(~ _,  A 1 = e-7(~/M)A + (7.4) 

where A and A+ correspond to A0 and A1 of the periodic case, respec- 
tively. Since Ao and A1 are exponentially degenerate for T <  T c, the mass 
gap is dominated by the term 7(rc/M) - 7(0), which, for large values of M, 
has the form 

I 7c 2 
m(M)  = M2 2K (7.5) 

i.e., ~ = 2 and a =0 ,  where ~ = 1/7"(0 ) is the surface stiffness coefficient. 
Note that (6.5) confirms the conjecture of refs. 9 and 13, derived on the 
basis of capillary-wave arguments. In fact, since the quantization condition 
(6.2) is solved by o)j = jTr/M, it follows that all finite-size correlation lengths 
~j(M) in the antiperiodic case agree with those predicted by the 
capillary-wave theory. (9'13) 

In the case of free boundary conditions (g = 0), the parity is irrelevant. 
The maximum eigenvalue A = e x p [ Z  7(o))/2], with o) satisfying 
exp(iMo)) =e xp  i6*(o)). The lowest energy level 7o is associated with the 
immaginary root, which differs from the branch point ir only exponentially. 
In fact, 70 ~ e x p ( - M r ) .  This result was obtained earlier in ref. 17. Hence 
c~ = 0 and a = r in this case. 

2.2.  The  C a s e  g > 0 

In the general case g > 0 the mass gap can be expressed in the form 

m = - I n  A 
A_ 

E -tf 2 ~ = +1 2rci c do9 y(o)) 

x [ iMeiu~~ - -  iJP'(o)-----~'flg)--~eiP(~'Bg) - g ) ]  (7.6) 
[ e imp~ _ fle,P(,o,,g) (g 

where P' -dP/do) .  Since g only appears in the product fig, and fl is 
summed over, we change the sign of fl in the second term and combine the 
two terms. This gives 

f l  ~ eiMco + iP(co, flg) 

Jc [ M -  P'(o), fig)] (7.7) m = ~ ~ do) 7(o9) e2iMo~ _ eaiJ,(~o,~g ) 
8=_+1 
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As in the periodic case, we deform the con tour  so that  it goes a round  the 
branch  cut. When  M ~ 0% the integral in (7.7) is domina ted  by c0 ~ iv near  
the b ranch  point;  see Fig. 5. The  second term in (7.7) scales as M v2 for 
large M because 

P(co, fig) sec2 6*(co) r  , e'(co,'fig) = Y(flg) cos 2 2 ~ o ten) 

1 
(09 - iv) 1/z + 0 [ ( o )  - iv) 1/2 ] (7.8) 

Hence  the first term in (7.7) dominates  and  gives the same M dependence 
asymptot ica l ly  as in the g = 1 case, i.e., 

-- m'c 
m ~ [ e  - i P ( i ~ : ' - g )  - -  e - i P ( i z ' g ) ]  e 

M 1 / 2  (7.9) 

with P(x, y) defined by (4.10)-(4.11). This establishes the result e = 1/2 and  
a = r  for all g > 0 .  

2.3. The Case - l < g < 0  

F o r  - 1  < g < 0, the largest T M  eigenvalues can be read off f rom 
(6.10). In  part icular ,  for the mass  gap we get 

m(M)=- 7(iv + ) -  7(iv_ ) -  ln ( ~ _  ) (7.10) 

Fo r  large M, the imaginary  solutions v and v+ are exponent ial ly  close to 
each other,  as seen f rom (5.6). The  first two terms in (7.10) are of  the form 
~ e x p ( - M v o ) ,  while the logar i thmic term gives the subleading contr ibu-  
t ion ~ M  -1/2 e x p ( - M r ) .  The leading behavior  of the mass  gap is then 

rn(M) = C exp( - mvo) (7.11 ) 

where vo can be calculated f rom (5.3), and C is independent  of  M; see 
below. C o m p a r i n g  (7.11) with the general form (1.4), it is clear that  a = %. 
Using (5.3), we get, after some algebra,  

sinh a = d { c o s h  2K1 sinh 2/s 

- cosh 2K2[1 + d 2 ( s i n h  2 2K I sinh 2 2K2 - 1)] 1/2 } 

x (1 - d 2 cosh 2 2K2)-1  (7.12) 

where 

d = (cosh 2 K 2 -  cosh 2gK2)/(cosh 2K 2 cosh 2gK 2 - 1) 
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The graph of a, obtained from (7.12) for several values of temperature, is 
shown in Fig. 6. Note that for g --, 0 , d ~ 1, and sinh a 
s i n h 2 ( K 1 - K * ) ,  that is, a ~ r ,  as expected. In the limit g ~ - 1  § 
Eq. (7.12) can be expanded for the small argument, since ~ 0 ,  and we 
get 

~ 2K2(cosh 2K1 - c o s h  2K*)(1 - I g l )  (7.13) 

Thus, o- vanishes linearly in the limit g ~ - 1  § (see also Fig. 6), in agree- 
ment with the prediction of Barber and Cates (12) derived by the random 
walk arguments; Note also that for g = - 1 ,  the term in the exponent of 
(7.11) becomes zero. However, the constant C in (7.11), which can be 
calculated from (7.10), has the form 

C = 8 sinh 2K1 sinh 2K* sinh a ) i _ ~ ~ d 6 *  ] - 1 
sinh 7(ia ) [Y([gi - Y(ig])] [ d o  (i0-) (7.14) 

and also vanishes. A physically appealing interpretation of the behavior of 
the mass gap for - 1  < g < 0 in terms of the tilted interface was given by 
Zinn-Justin: (m for - 1  < g < 0, the perpendicular interface gains energy by 
tilting at a certain angle, thus creating a segment which runs along the 

Fig. 6. 

15 

f f  K=I K=O.7 

10 I 

0.5 

L 
-1 -0,5 

9 

The graph of a obtained from (7.12), for different values of temperature (for KI = 
K2=K=J/ksT) in the region -1 <g<0. 



584 Abraham et  aL 

defect. If ~a is the free energy associated with the segment of the interface 
pinned to the defect, then, by minimizing the total energy with respect the 

,2~/2 where ~ is the free energy of tilt angle, it is easy to see that cr ,,~ (r2 _ ~a/ , 
the orthogonal interface. (In this minimization the angular dependence of 
the inclined interface is neglected.) The exact relationship between a, 1:, and 
re is obtained from (7.12): 

cosh a = cosh z - cosh rd + 1 (7.15) 

where ra is the free energy of an interface pinned to the defect line with 
couplings I g[ K2. The quantity ~a has been calculated exactly by 
Abraham/22) It is obtained as the solution of 

cosh ~a = cosh 2K2 cosh 2K* - sinh 2K2 sinh 2K1" cosh q~ (7.16) 

with q~ implicitly given by 

cosh 2K*(cosh 2K1 e ~  cosh 2K*) 

eb[sinh 2 2K* + e~ q~ - cosh 2K2" cosh 2K1) ] = 0 

and 

(7.17) 

eb_ cosh 2K 2 (7.18) 
cosh 21gl/s 

Note also that ra ~ r, in the limit [g[ --* 1 - ,  so that the relation proposed 
by Zinn-Justin (111 is recovered in this limit. An exact qualitative derivation 
of (7.15) is described in the next section. 

2.4. The Case  g <  - 1  

In this case mass gap is given by 

m(M) = ?(o9~- ) -  ? ( o 9 + ) -  In (A A--~+ ) (7.19) 

Since A+ and A_ are exponentially degenerate, the dominant contribution 
to the mass gap comes from the first two terms in (7.19). The wavenumbers 
o9+ are small, of the order l/M, and y(o9) in (7.19) can be expanded for the 
small argument 

1 o92 7(o9) = 7(0) + ~ + --- (7.20) 
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where ~c is the surface stiffness coefficient. Since the wavenumbers co ~ differ 
in terms of the order 1/M 2, then from (7.19) and (7.20), it follows that the 
mass gap m(M) decays algebraically, with c~ = 3. The exact form is obtained 
from (7.19) and the appropriate solutions of (5.1), calculated with fl = -1 .  
We get 

1 7c 2 

m(M) - M3 ~c 2 sinh 2K 2 [Y(g) t _ y (g ) ]  (7.21) 

where we used the small-argument expansion for tan 6*(co), (4.11c). This 
result was predicted by the numerical simulations, and was later derived 
within the random walk theory. (12) A revealing physical derivation of this 
result for the quantum case was given by Barber and Cates, who used the 
second-order perturbation theory. ~ 

8. Q U A L I T A T I V E  A R G U M E N T S  

The results derived in the previous section can also be recaptured by 
qualitative arguments. Since such arguments emphasize the physical picture 
behind the finite-size behavior of the correlation length, it is instructive to 
describe them in some detail. 

Let us first consider the case g > 0. In this case the equilibrium state 
has a succession of closed domain walls which wind around the cylinder. 
On a cylinder of length N, suppose we have n domain walls. These cannot 
cross, but are otherwise indistinguishable. Thus, a crude estimate of the 
n-wall partition function is 

Z(N, n)~ Z'~(M) (n N) (8.1) 

where Zo(M) is the partition function of a single domain wall loop; inter- 
actions between loops are ignored. A maximization over n yields 

nmax Zo(M) ~ 1 + e T M  (8.2) 

by using the results of ref. 24 for Zo(M ). This gives the expected distance 
between the domain walls, and thus the correlation length and the mass 
gap of the form (7.9) in the exact work. 

When g < 0 ,  more care is needed in estimating Zo(M ). As 
Zinn-Justin (n) has suggested, we expect a section of the closed loop to run 
along the ladder of negative bonds. The loop is then closed by a free 
interface at an angle determined by M and the length intercepted with 
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the ladder. The free energy fluctuations associated with such a crooked 
configuration are given by 

f • ~ M[-sec 0r(0) + tan(0) ra] (8.3) 

where zd has already been discussed; it is the binding free energy of a 
domain wall to an internal defect. (22) Note that we include angular 
dependence in ~. We then minimize over 0, using the known result (23) for 
~(0): 

z(0) = ~[coo(0)] cos 0 - iCoo(O ) sin 0 (8.4) 

with 

7<')[CO0(0)] = i tan 0 (8.5) 

The minimization gives Zd =/COo(0), which allows evaluation of 0 from the 
equation 

sinh Zd sinh 2K* sinh 2K2 
tan 0 = (8.6) 

sinh y( - i'Cd) 

This gives 

Zo(M ),,~e ~M (8.7) 

with a given by (7.15), a result already obtained in the exact analysis. Thus, 
Zinn-Justin's idea (11) is exactly correct if we put in the anisotropic surface 
tension. Equation (8.7) contains in principle a prefactor. This can be 
guessed from an SOS model with random displacement parallel to the 
cylinder axis. A detailed calculation (not reproduced here) gives (8.7) with 
a prefactor independent of M to leading order. Thus, we recapture the 
results in (7.11) for - 1  < g < 0 .  

The qualitative argument for g < - 1  takes note that the ground state 
has a domain wall running along the ladder of bonds and another else- 
where. We develop this by a simple SOS transfer matrix along the cylinder 
axis for a single strip which avoids the bond ladder, to which the other 
string remains bound on a microscopic length scale. Using the result of 
ref. 24 [-Eq. (3.10)] for the discrete quantization, we readily recapture the 
1/M 3 mass gap behavior as in (7.21). 
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